The Effect of Using the Mental Maps on the Academic Achievement in Mathematics among the Educable Intellectually Disabled Students in Rafha Province #### Essam Abdou Ahmed Saleh #### **Abstract** The study aims at investigating the effect of using the concepts mapping on the educable intellectually disabled students' academic achievement in Rafha province in the Kingdom of Saudi Arabia. The researcher used thetwo-group experimental design with experimental and control groups. The study sample is restricted to theeducable intellectually disabled students in the fifth grade in Rafha province in 2019. The sample consists of 18 students distributed into an experimental group with eight students and a control group with tenstudents. The researcher prepared the educational plans using mental maps for the two groups in addition to an academic achievement exam. The reliability was found by using the Kuder-Richardson Formula, and the Reliability Value was (0.90). By the end of the experiment, tests were conducted upon the two groups. After statistically processing the data using the t-test for two independent samples, the results showed the existence of statistically significant differences between the mean of the experimental group which studied using the mental mapping of concepts and the mean of the control group which studied using the ordinary learning methods in favor of the experimental group. Thus, the researcher highlyrecommends the using of the concepts maps in teaching the educable intellectually disabled students. Keywords: Mental Maps, Academic Achievement Educable Intellectually Disabled Students #### About Authors: Department of Education. Faculty of Science and Arts. Northern Border University, Rafha, KSA. Corresponding Author: Essam Abdou Ahmed Saleh, Department of Education. Faculty of Science and Arts. Northern Border University, Rafha, KSA #### Introduction Intellectual disability is considered as one of the hardest and most serious problems that may face the family and the community. Having an intellectually disabled family member significantly impacts the lives of all the family members. Therefore; societies, organizations and bodies take care of the special education categories in general and the intellectually disabled in specific to minimize the impacts of the intellectual disability on the family and the community through taking care of and paying attention to this category in addition to providing its members with education and rehabilitation. Education is offered to the intellectually disabled students in the intellectual schools and colleges and special classes inside the regular schools. These classes are called the mainstream classes and provide the intellectually disabled students with many educational programs. These programs aim at providing different types of information, skills, and emotional aspects that meet the needs of the intellectually disabled individuals by using the teaching methods and strategies that suit the nature of their disability. The educable intellectually disabled people are consideredamong the highest intellectually disabled groups in terms of their level of intelligence. Therefore; the Kingdom of IJPS 111 Saudi Arabia pays special attention to this group by establishing mainstream classes in regular schools to teach them the academic aspects and differentskills. Developing life skills is one of the goals of teaching intellectually disabled through the educational programs that can be provided to this category, since developing these skills develop their ability to deal with the various life situations. (Ayres; Mechling & Sansosti,2013) clarify that the life skills of people with intellectual disability are the skills needed to achieve a productive life. The lack of these skills prohibits the intellectually disabled person from acting independently in his community. Therefore, taking care of these skills is one of the important issues for intellectually disabled people. (Zaitoun, 1996) shows that the prevailing teaching methods such as; recitation, lecturing, presentation, and demonstration do not succeed alone in delivering the cognitive content and sometimes these methods become a source of difficulty that hinders the process of generating and acquiring the scientific concepts by learners. (Buzan, 2005) defined the mental maps as (an ideal intellectual tool to organize ideas). Mental maps also categorize and organize facts and ideas using colors and drawings. These maps depend on creating a central concept in the map's center, out of which several sub-concepts radiate. The map is identified either by words, symbols or images. This way the map reflects the brain's mode of operation and invests its two hemispheres full capacities in addition to providing the student with interesting new ways to memorize and recall information in order to use them to improve memory and enhance concentration and creativity by reviving imagination. Thus, the best methods are furnished to use the student's mental resources. Mind mapping stood out from all other teaching methods as a useful tool that organizes, stimulates and urges the brain hemispheres. Luitan and his colleagues reviewed, in 1980, 135 cases that studied the impact of acquiring and keeping information with the help of organizational, motivational types of learning. The study results revealed that any organizational forms always has a positive impact that deepens the students' understanding of what they know. The researchers clarify the role of these maps in strengthening the activities integration of the brain through lessons planning and teaching experiences. They also stress the importance of the interactive process between the two hemispheres and its impact on creativity development (Jensin, 2007). Thus, the importance of the programs based on the mental maps for intellectually disabled people can be seen. These programs contribute to enhancing and help in developing the process of teaching those individuals, which is one of the primary learning goals. Thus, the current study focuses on investigating the effect of using the mental mapping strategy on the academic achievement of the educable intellectually disabled student in the Kingdom of Saudi Arabia. #### 1.1. Problem Statement: The problem currently being raised in education is the problem of the academic achievement of the intellectually disabled students. Those students generally suffer from this learning problem in different courses. Students with an intellectual disability suffer from deficiency and dispersion in attention and concentration, and some of them also suffer from hyperactivity. Therefore, the current study tries to help the students to overcome their problems in mathematics using an educational method that clarifies concepts, meanings, and examples in organized diagrams surrounded by frames and arrows. This method illustrates the content in a new attractive way that keeps the students' attention and enhances their academic achievement. Thus, the problem of the study is formulated as the following: Will the academic achievement of the fifth grade intellectually disabled students be affected by using the concepts maps and is their academic deficiency going to be adjusted? #### 1.2. The Study Significant: The present study derives significance from its compatibility with the objectives of the learning-teaching process that seeks to allow students to acquire the effective tools and strategies that enable them to develop the different levels of understanding. The study is also important because it draws the attention of the researchers and educational workers to an instructional method that may be effective in teaching mathematics, which may bridge the gap between the educational reality and what it is hoped to be. #### 1.3. The Study Objective: The effect of using the mental maps on the academic achievement of the fifth grade educable intellectually disabled students in the Kingdom of Saudi Arabia. #### 1.4. The Study's Hypotheses: There is no statistically significant difference between the mean of the experimental group, which studied using the mental maps, and the mean of the control group which studied using the usual method, in terms of the academic achievement of the fifth grade educable intellectually disabled students in mathematics. There is no statistically significant difference between the means of the pre- and post-tests of the experimental group, which studied using the concepts maps, in terms of the academic achievement. There is no statistically significant difference between the means of the post and follow-up tests of the experimental group in terms of academic achievement. #### 1.5. The Study Limitations: - 1- A sample from the fifth grade educable intellectually disabled students in Rafha province in the academic year 2018-2019. - 2- The second semester of the academic year 2018-2019. - 3- The topics of the fifth-grade mathematics textbook. ### 1.6. The Study Terminology: Intellectual Disability: The definition of the American Association on Intellectual and Developmental Disabilities (AAIDD): it is a disability characterized by significant limitations in both mental functioning and in adaptive behavior, which covers many everyday social, intellectual and practical skills. This disability originates before the age of 18. (Legislative Goals, 2008). The operational definition: A group of the fifth grade intellectually disabled students who suffer from some educational problems and need support, educational care and attention from their teachers in regards of explaining the scientific content in various ways and methods to help and empower them to reach the intended level. #### **Concepts Maps:** Defined by Attia (2008) as: "two-dimensional graphs of the relations between concepts, illustrated by sequential hierarchical diagrams of the concepts included in the subject".(Attia,2008) The operational definition of the concepts map: Graphs, prepared by the researcher, of the concepts of the fifth-grade mathematics textbook to arrange the concepts and clarify the relations between them so the intellectually disabled students can comprehend and understand these concepts in an organized way and ordered and attractive forms. #### **Academic Achievement:** Alkubaisi and Rabie (2008) define it as a tool used to determine the level of learner's acquisition of information and skillspreviously learned in a particular course (Alkubaisi and Rabie: 2008) The operational definition of Achievement: It is the mark scored by the student in the exam prepared by the researcher. The exam indicates the extent of the students' understanding of the taught concepts and material limited to the mathematics textbook. #### 1.7. Theoretical Framework: #### The Concepts' Maps: Many of those who are concerned in teaching methods and strategies are interested in Ausubel's theory gained more interest. Concepts mapping, or what is also known as the cognitive mapping or the graphs method, is one of the applications of this theory in the field of teaching methods (Attiah: 2008) He assumed that the learner's brain stores information in a hierarchical way arranged from the general to the specific and it could be easier to learn it effectively and easily recall it. Therefore, it is necessary to introduce information appropriately in the form of general summarization that includes intellectual pillars which confirm the new information and establish it in the learner's mental structure (Mar'y and Alhielah: 2002) Mohammed (2007) confirmed the same idea stating that each has a cognitive structure. Whenever this individual goes through a new educational experience, the new piece of information is integrated into his cognitive structure, and so the individual's cognitive structure is reshaped with every new educational experience which in turn becomes an integral part of his overall cognitive structure (Mohammed:2007) Since meaningful learning is basically achieved by connecting the newly learned material with what exists in the learner's cognitive construction, it is necessary to connect what the learner already knows and what he learns. The meaningful learning could not be achieved unless the cognitive material's construction is organized, clear, reliable and connected to the new material because this is what enhances the learner's ability to memorize the material and recall it (Abujado: 2009) The previously mentioned is achieved by the concepts mapping. It is defined as a tool to organize the ideas and meanings included in the subject or unit and illustrate the relationships between these concepts to help the students in organizing their knowledge to deepen their understanding of the studying unit or course (Attiah: 2008) #### The Components of a Concept Map: - The scientific concept: the mental construction that results from the common features of the phenomenon or the individual's intellectual perspective of objects. The conceptis written inside an oval, circle or a square. - Linking words: Words used to connect two concepts or more, such as: classified as, composed of, consists of, from, has, etc., these words are written on the branches that connect concepts. - Downward-branching: It is a link between two concepts or more in a hierarchical structure and takes the form of a downwardbranch. - The examples: The events or the specific actions that represent the concepts and they are usually proper names (Khataiba: 2005). #### **Kinds of Concepts Maps:** - Hierarchy concept map whichis the most common kind. - Flowchart concept map. - Central theme map in which the main concept is placed in the center of the map followed by the less essential concepts. - Spider concept map (Attia: 2008) #### Pedagogical benefits of mind mapping: Hilal (2007) stated that mind mapping helps learner and teacher to achieve the following: - 1. Organizing the cognitive skills structure of thelearner and the teacher. - 2. Establishing, reviewing and recalling data and information, due to the image drawn in the learner's mind. - 3. Recurrent revision of the subject: Since it widens the understanding and enables the addition of new data and information to what already exists. - 4. Swift Revision of the topics by the learners when they do not find enough time for a thorough revision. - 5. Employing modern technology in learning and teaching such as; computers, projectors, slides projectors, recorders, etc. - 6. Reducing the number of words used in the lesson, which helps in increasing the level of concentrating and facilitating the learner's understanding. #### **Achievement:** Academic achievement is the occurrence of the intended educational process provided that it is a result of a specialized training and teaching program. Achievement is closely related to teaching. However, the teaching concept is more comprehensive since it indicates the performance changes during the training and practicing. It is also represented in the acquisition of skills and information and the changes in attitudes and values which includes the desired and undesired results. Achievement is more connected to the educational desired outcomes or educational objectives. The researcher is going to survey some of the academic achievement definitions, some of the concepts and subjects related to academic achievement and the factors that affect it. #### The definition of academic achievement: The definition of Abdulali Aljusmani (1994): Academic achievement is the occurrence of the intended educational process provided that it is a result of special training and a teaching program. The definition of Farouq Abdusalam (1992) cited in Ruqaia Alsaid (1999): Academic achievement means the level reached by a student in the courses he studies, which is evidenced by the marks obtained in the exams. In light of these two definitions, the researcher studies the effect of using the mental maps on the level of the academic achievement of the educable intellectually disabled students which helps in rehabilitating them. #### Academic Achievement and Intelligence. Majida Alsaid Obied "2000" confirmed that there is a close connection between academic achievement and intelligence. Students with high intelligence usually achieve high marks, and they are characterized by their hard-working. Meanwhile, students with low levels of intelligence lack such hard-working and are characterized by negligence in-class work. The intelligent students may fail due to their over-confidence in their intelligence, and so they will not prepare appropriately. Many studies confirmed the existence of a relationship between academic achievement and intelligence. These studies show the importance of intelligence and its impact on academicachievement and that academic achievement and intelligence are closely connected. This connection varies according to the educational stage. It is stronger in the early education stages than in higher ones. ### The Factors Affecting the Academic Achievement The educational process has three pillars; student, teacher, and curriculum. Since the student is the cornerstone, it is essential to identify the factors that affect academic achievement by knowing the factors and variables related to the student, which are: - 1. Social factors. - 2. Emotional factors. - 3. Mental factors: Which are related to the mental, cognitive organization such as; intelligence and mental abilities. - 4. Personal factors: Many studies tackle the relationship between personal characteristics and academic achievement. The studies confirmed having a positive correlation between the academic achievementon the one hand and the emotional stability, mood and self-confidence on the other. - 5. Motivation: This factor is significant to the extent that no job or task can be fulfilled as desired without having motivation as its vital driver to reach the goal and achieve the task correctly. #### **Intellectual Disability:** Intellectual Disability has different definitions that reflect the evolution of the concept that occurred as a reaction to the development in the society in general and in the intellectually disabled society in specific. Reviewing these definitions, one finds that they vary according to the way of considering intellectual disability. Some view it as a social problem; othersconsider it a medical problem while some consider it an educational issue. The American Psychological Association (A. P. A. 1994) provides the following definition in its Diagnostic and Statistical Manual of Mental Disorders (DSMIV): a below average functional intellectual performance with IQ of 70 or less in an individual intelligence test. For children, it is a clinical report of a below average functional performance. Due to the nature of this study which interests in the educational aspect, the researchers define the intellectual disabled child as "the child who cannot normally achieve the same level as his ordinary peers in the same class and whose IQ ranged between (50-70) point and is considered a member of the educable intellectually disabled category". ### Teaching arithmetic to the intellectually disabled students The intellectually disabled students are known for their deficiency in mathematical thinking due to their poor general intelligence and their impaired memory with numbers in addition to the emotional reasons that accompany the arithmetic operations such as; fear, anxiety, lack of self-confidence, lack of concentration, misbehaving and lack of experience. The special education teacher must consider the following when teaching arithmetic to the intellectually disabled students: - 1. Arranging the students in small groups. - 2. Usingconcrete materials in teaching arithmetic. - 3. Applying mathematics on practical situations related to purchasing, farming, gardening, handcraft, and sport. #### 1.8. Previous Literature: The study of Akinoglu & Yasar (2007) aimed at identifying the effect of notetaking using the mental maps on learning the concepts during the science class. It also aimed at determiningthe academic achievement and the attitude of the elementary stage students towards science. The researchers used qualitative research and experimental method. Eighty-one students were randomly selected from the sixth grade in a public school in Istanbul- Turkey. The students of the control group were taught using the traditional method while the students of the experimental group were taught using the mental maps method. The results of the field experiment showed positive statistically significant differences in learning scientific concepts due to using mental maps. The researchers recommended employing this method for teaching science. The study of Almane'i (2008) aimed at investigating the effect of using the mind mapping strategy on the reading comprehension in the English language among the Saudi first-year university female students. An experimental study, with post and pre-tests, was conducted upon a sample of 122 students who study in the English language department. The analysis of the results showed that the performance of the experimental group increased significantly in the post-test in comparison with their performance in the pre-test. The researcher concluded that the strategy is positive and effective since it increased the students' reading comprehension level. Algubilat and Alobiedi's study (2009) aimed at knowing the impact of three concept mapping strategies on academic achievement, conceptual comprehension and problem-solving in mathematics among (124) students from the tenth grade in Dhiban, Jordan. The experimental group was exposed to the concepts mapping strategy according to teacher-students construction, students' construction and a teacher's construction while, the control group was taught using the ordinary method. All the groups sat for an exam that tests the conceptual comprehension and problem-solving before and after conducting the program. The results revealed that the students of the experimental group, who studied using the concepts mapping strategy, excelled in achievement the students of the control group. Waqqad (2009) conducted a study to determine the efficiency of using the mental mapping strategy on academic achievement in some of the biology topics. The researcher used the experimental method on a sample from the first secondary female students. She also used an achievement test, designed by the researcher, in addition to a teacher guidebook to teach the chosen topics. The researcher found out that there are statistically significant differences between the pre and post tests among the control and experimental groups. #### 2-The Study Procedures: #### 2.1. The procedural steps: To conduct the practical part of the current study, the researcher is going to follow the following steps: - 1- Having access to the files of all the children registered in the fifth grade in Rafha's intellectual schools. - 2- Identifying and homogenizing the study's sample. - 3- Preparing the mental mapping program of the mathematics course for the fifth-grade educable students with intellectual disability in the Kingdom of Saudi Arabia. - 4- Applying the achievement test on the intellectually disabled students in both groups (the experimental and the control). - 5- Exposing the students in the experimental group to the independent variable (the program) and leaving the students in the control group without being exposed to this program. - 6- Conducting a post-test on the students of the experimental and control groups at the end of the program. Accordingly; the experimental design of the current study could be represented as the following: The experimental group: pre-test- implementing the program- post-test. The control group: pre-test - post-test. - 8- Conducting the follow-up test one month after implementing the program. - 9- Using the appropriate statistical methods and concluding the study's results. - 10- Interpreting the study's results considering the theoretical framework and the previous studies. - 11- Drawing educational recommendations related to the study's topic. #### 2.2.Study tools: The researcher is going to use the following tools in the current study: - 1- Child's primary data collecting form (designed by the researcher). - 2- Mental mapping program specially designed for the mathematics course of the fifth-grade educable students with intellectual disability in the Kingdom of Saudi Arabia. (designed by the researcher). - 3- Observation form of children with intellectual disability. (designed by the researcher). 4- Mathematics academic achievement test. (designed by the researcher). #### 2.3. The Study Design: The researcher used the experimental design of two equal groups. One group studied using the concept mapping method while the other used the traditional method. (Dawod and Abdulrahman: 1990). As shown in table (1) Table 1: Experimental design | Post-test | Independent variable | Pre-test | Group | |-------------------|----------------------|------------------|--------------| | | Concepts Mapping | _ | Experimental | | Achievemen t exam | Traditional method | Achievement Exam | Control | #### Study sample and population: The study population means all the visible items studied by the researcher (Milhim: 2002), which includes the special education fifth-grade students in Rafha province 2018-2019. The study sample consists of 18 students divided into an experimental group of 8 students and a control group of 10 students from the fifth-grade special education classes in Haroun Alrashied elementary school 2018-2019. #### **Equality between the study groups:** The researcher did his best to create a state of equality between the control and experimental groups in terms of the various variables that may affect the dependent variable, which are: - 1- The chronological age in months. - 2- The final mark of mathematics in the fifth grade 2017-2018. - 3- Fifth grade general average in the academic year 2017-2018. - 4- Fathers' educational attainment. - 5- Mother's educational attainment. Table (1) illustrates this: Table 1: The calculated T-value of the equivalence variables of the study sample's members | Variables | Group | Numbe
r | Mean | Standard
Deviation | The Calculated t- Value | The
Tabulated | |-------------------|--------------|------------|------|-----------------------|-------------------------|------------------| | Chronological Age | Experimental | 8 | 2 3 | 3 | 0 | | | in Months | Control | 10 | 2 | в | 9 | | | Mathematics | Experimental | | 3 | 8 | 0 | | |-------------------------|--------------|---|----|---|----------------|---| | Subject's Mark | Control | 0 | | 2 | | | | C1 A | Experimental | | B | 9 | 77 | | | General Average | Control | 0 | 5 | 6 | - B | 2 | | Fathers' Educational | Experimental | | Ø | 9 | - & | | | Attainment. | Control | 0 | | 4 | 7 | | | Mother's | Experimental | | 23 | Ø | - 9 | | | Educational Attainment. | Control | 0 | | 8 | - W | | The results show that there is no statistically significant difference between the two groups at the level of (0.05), and a degree of freedom of (16) since the calculated t-value is less than the tabulated value (2.120) which indicates that the two groups are equivalent in terms of the variables mentioned in the above table. #### - Preparing the educational plans: The material was limited to the topics of the mathematics textbook of the fifth elementary grade which are (comparing numbers, ordering numbers, adding two-digit numbers, Subtracting two-digits numbers, forms, plane figures). In light of these topics, the researcher specified the behavioral objectives and depended on Bloom's taxonomy in this cognitive domain within its three levels (knowledge, comprehension, and application). The sum of the behavioral goals is 32. Accordingly, twelve education plans were prepared for the two groups; the experimental that studied using the concepts mapping method and control that studied using the traditional method. These plans were submitted to a group of experts specialized in special education and psychology and according to their guidance and remarks the plans were modified. #### - Preparing the study tool: #### - Preparing the achievement exam: The achievement exam was developed in light of the six topics of the fifth grade's textbook and following the steps of making a specifications table (Algamsh et al: 2001). The items of the achievement exam are (20) which measure the three levels of Bloom's taxonomy (knowledge, comprehension, and application). The first (10) items are three-option multiple choice questions and the remaining items are "True or False" items that need to be chosen by putting a cross or a tick mark next to the sentence. These items were reviewed by a group of experts, specialized in special education and psychology and in the light of their views and remarks the items were modified. Table (2) illustrates the achievement exam's specifications table: Table 2: Achievement exam's specifications table | Content | The
Number | Concentration | Knowledg
e | Comprehension | Application | Sum
100% | | |-------------------------------------|---------------|---------------|---------------|---------------|-------------|-------------|--| | | of Sessions | Ratio | 37.5% | 25% | 37.5% | 10070 | | | Comparing
Numbers | 2 | 11% | 1 | 1 | 1 | 3 items | | | Ordering Num bers | 2 | 11% | 1 | 1 | 1 | 3 items | | | Adding Two -
Digits Numbers | 3 | 18% | 1 | 1 | 1 | 3 items | | | Subtracting Two -
Digits Numbers | 3 | 18% | 1 | 1 | 1 | 3 items | | | Shapes | 4 | 24% | 2 | 1 | 2 | 5 items | | | Plane figures 3 | | 18% | 1 | 1 | 1 | 3 items | | | Sum | 17 sessions | 100% | 7 items | 6 items | 7 items | 20
items | | #### - Conducting a pilot study The achievement exam was conducted upon a pilot sample of (10) students from the fifth-grade special education classes in Haroun Alrashied elementary school on 6/1/2019. The researcher graded the students' answers and distributed them into two groups; upper and lower, to calculate the difficulty coefficient and the discrimination power. The difficulty coefficient was between (0.30 -0.70) which is considered a good result as stated by (Althahiret al.: 2002) since the difficulty coefficient is between (0.20-0.80). Meanwhile, the discrimination power ranged between (0.40-0.80). #### - Reliability The researcher found the tool's reliability using Kuder-Richardson formula (20) since it is used for the objective achievement testing in which the student's answer is either right or wrong (Milhim: 2009) and the achievement exam's reliability is (0.90). #### - The study tool grading criterion The items of the achievement exam were graded by giving one mark for each right answer and a zero for the wrong answer, the unansweredquestioned or the item with two answers. #### Carrying out the experiment The experiment was initiated on Sunday 6/1/2019, after meeting the research's requirements that includes the two groups' (experimental and control groups) equivalence, preparing the education plans and the achievement exam. The experiment was finished on Tuesday 30/4/2019. #### - Conducting the tool's post-test The post-test was Conducted on the students of the experimental and control groups on 2/5/2019 under the researcher's supervision. #### - Statistical Instruments: - 1- Two independent sample t-test. - 2- Pearson correlation coefficient. - 3- Kuder-Richardson Formula. - 4- Spearman-Brown formula. - 5- Wilcoxon test. #### **Results and Discussion** After grading the study tool, the data were statistically processed to verify the study's hypotheses, as follows; #### First hypothesis: There is no statistically significant difference between the mean of the experimental group's grades, which studied using the concepts mapping method, and the mean of the control group's grades, which studied using the ordinary method, in terms of the academic achievement in the mathematics course among the special education fifth grade students. The results showed that the grades' mean of the students in the experimental group, who studied using the concepts mapping method is (15.5000), and the grades' mean of the students in the control group, who studied using the ordinary method is (13.0000). A statistically significant difference is found at the level of (0.05) and a degree of freedom of (16) since the calculated t-value is bigger than the tabulated value which is (2.120). Table (3) illustrates that. Table 3: The results of the t-test for the experimental and control groups regarding the achievement | Group | Number Mean | | Standard | T-value | | |--------------|-------------|---------------|-----------|------------|-----------| | Group N | Nullibei | IIIDEI WICAII | Deviation | Calculated | Tabulated | | Experimental | 8 | 15.5000 | 1.19523 | 2.042 | 2.120 | | Control | 10 | 13.0000 | 2.05480 | 3.043 | | This indicates that the students of the experimental group, who studied using the concepts mapping method, excelled the students of the control group, whostudied using the ordinary method. Thus, the first hypothesis is rejected since the concepts mapping is an effective method in organizing, arranging, and summarizing the scientific material for the students. #### **Second hypothesis:** There is no statistically significant difference between the average achievement grades in mathematics in the pre- and post-tests of the experimental group's students, who studied using the concepts mapping. The results showed that the mean of differences between the pre- and post-tests of the experimental group is (8.6520) while the standard deviation is (6.32314), the calculated t-value is (3.8580) which is bigger than the tabulated value (2.365) at the significant level of (0.05) and a degree of freedom (7). table (4) illustrates that Table 4: The t-value of the experimental students' pre- and post-achievement test | Group | Nimakan | Mean | | Standard | T-Value | | | |--------------|---------|--------|---------|------------|-----------|------------|-----------| | | Number | Pre- | Post | Difference | Deviation | Calculated | Tabulated | | Experimental | 8 | 62.750 | 54.1250 | 8.6250 | 6.32314 | 3.8580 | 2.365 | Third hypothesis: This indicates the existence of a difference between pre- and post-tests in favor of the post-test. Thus, the second hypothesis is rejected since the concepts mapping can modify the academic achievement of the students of the experimental group in terms of organizing and summarizing the scientific material and introducing it simply and attractively that enables the students to focus on the material using this different way. ## and the follow-up tests were calculated using the Wilcoxon test. Table (5) illustrates the results reached by the researcher. There is no statistically significant To test the validity of this hypothesis, difference between the experimental group's the difference between the grades means of the average grades of the post and follow-up tests | grades in the post and follow-up achievement tests | | | | | | | | | |--|---|-----------|---------|---------|--------------|--|--|--| | Direction | N | Mean Rank | T-Value | Z-Value | Significance | | | | | Direction | N | Mean Rank | T-Value | Z-Value | Significance
Level | |----------------|---|-----------|---------|---------|-----------------------| | Negative ranks | 6 | 6.5 | | | | | Positive ranks | 4 | 4 | 16 | 1.173 | Insignificant | | Equal | 0 | - | | | | Table (5) clarifies that there are no statistically significant differences between the post-tests' means of the students of the experimental groups in the post and follow-up tests in terms of achievement, since the (Z) value is insignificant, which indicates the effectiveness of the concepts mapping in organizing, arranging, and summarizing the scientific material for the students. #### **Conclusion:** In light of the study results, the researcher concludes the following: 1- The effectiveness of the concepts mapping in improving the achievement of the students of the special education fifth elementary grade in mathematics. #### **Recommendations:** In light of the current study, the researcher recommends the following; - 1- Concepts maps in teaching the special education students mathematics by their teachers. - 2- The necessity of training the special education teacher on using the concepts maps since it enhanced the academic achievement of the educable intellectually disabled students. - 3- The necessity of providing the teachers with a guidebook that explain the nature of the mental maps, how to use them and how to train the students through these maps. - 4- Conducting training sessions for the science teachers on applying the mental maps strategy in teaching their courses. - 5- The need for furnishing the curriculum with diagrams that clarify the relations between the concepts to enable the student to acquire these concepts and distinguishing between them. - 6- Eliminating the traditional way in teaching concepts, which focuses on the mere acquiring of data and knowledge and creates a kind of dependence on the teacher that makes such knowledge less significant and less valuable for the student and focusing instead on the teaching strategies which are based on participating, interacting and positiveness such as the mental maps. #### **Proposed researches** The researcher suggests conducting the following researches: - 1- Conducting a similar study in other subjects and on different academic stages. - 2- Studying the effect of the mental maps on other variables such as, science operations' acquisition, creative thinking development and adjusting the teachers' misunderstanding. - 3- Conducting comparative studies between the mental mapping strategy and other modern teaching strategies such as; Learning cycle, cooperative learning, investigative learning, problem-solving and fast learning. #### Acknowledgments Essam Abdou Ahmed Saleh is supported with the research grant No (7780-SAR-2018-3-9-F) Deanship of Scientific Research, Northern Border University, Arar, KSA. #### References - Abdel Salam, Farouk et al. (1992). Introduction to Educational and Psychological Measurement, Second Edition, Beirut, Dar Al-Bashaer Islamic. - Abu Jado, Saleh Mohammed Ali (2009). Educational Psychology, I 7, Dar Al Maysara for Publishing and Distribution, Amman, Jordan - Akinoglu, O., & Yasar, Z. (2007). The effects of note taking in science education through the mind mapping technique on students' attitudes, academic achievement, and concept learning. Journal of Baltic Science Education, E(@), @LAL@. Bahar, M. (!!!). Investigation of - Al-Jasmani, Abdul-Ali (1994). Psychology and Social and Educational Applications, Arab Science House, Beirut. - alqubaylat, aleabidiu (2009). The Effect of Three Strategies in Building Conceptual - Maps on Conceptual Understanding and Solving Problems in Mathematics for 10th Grade Students, Educational Journal, Kuwait University. - Attia, Mohsen Ali (2008) Recent Strategies in Effective Teaching, Dar Safa for Publishing and Distribution, Amman, Jordan - Ayres, K. M., Mechling, L., & Sansosti, F. J. (2013). The use of mobile technologies to assist with life skills/independence of students with moderate/severe intellectual disability and/or autism spectrum disorders: Considerations for the future of school psychology. *Psychology in the Schools* - butrus, butrus Hafez (2009). Teaching Children with Learning Disabilities, Dar Al Maysara for Publishing and Distribution, Amman, Jordan. - Buzan, Tony. (2005). The ultimate book of mind maps. in Great Britain by Martins the printers Limited, Berwick upon Tweed. - Daoud, Aziz Hanna and Naur Hussein Abdul Rahman (1990). Methods of Educational Research, Dar Al-Hikma for Printing and Publishing, Baghdad. - EL-Kubaisi, Abdul Wahed Hamid and Hadi Mishaan Rabie (2008). School Achievement Tests, Arab Society Library for Publishing and Distribution, Amman, Jordan - EL-Manna, Manar (2008). The Impact of the Use of English as a Foreign Language Learners in the University on the Strategy of Mental Planning on Reading Comprehension and its Relation to the Taxonomic Control of the Brain, Unpublished Message, Riyadh University for Girls, Riyadh. - Goals, Legistlative (2008). Disability Bolicy Collaboration, 110th Congress, American Association on Mental Retardation. Essam Abdou Ahmed Saleh ISSN-0976 9218 Hilal, Mohamed (2007). Rapid Learning Skills, Heliopolis, Center for Development and Performance Development. - Jensen, Irk. (2007). Brain-Based Education, (translation of Jarir Library), Saudi Arabia. - Jensen, Irk. (2007). Effective Teaching, (translation of Jarir Library), Saudi Arabia. - Khatayba, Abdullah Muhammad (2005). Education for Science for All, Dar Al-Maysara for Printing and Distribution, Amman, Jordan - Makki, Faisal Mohammed (1988). Personalized handicapped child and sick child, military printing press, first edition. - Marai, Tawfiq Ahmed and Mohammed Mahmoud Al-Hila (2002). General Teaching Methods, I 1, Al-Maisara Publishing House, Amman, Jordan. - Melhem, Sami Mohammed (2009). Measurement and Evaluation in Education and Psychology, 4th ed., AlMaisara Publishing House, Amman, Jordan - Mohammed, Mohammed Jassim (2007). Theories of Learning, I 1, Second Edition, Dar Al-Thaqafa Publishing - Nabhan, Yahya Mohamed (2008). Teaching Skills, Al Yazuri Scientific Publishing House, Amman, Jordan - Olive, Aish (1969). Methods of Teaching Science, Amman, Dar Al Shorouk for Publishing and Distribution. - Qalada, fuad (2009). Instructional Models and Activation of the Functions of the Human Brain, Alexandria, Dar Al Maarifa University. - Ruqaya al-Sayyid al-Tayeb (1993). Which methods are more successful in providing disabled people, daily life skills, Master Thesis, University of Khartoum Faculty of Education. - waqad, Hadeel (2009). The effectiveness of the use of mental maps on the collection of some subjects biology course for students of the first grade secondary secondary in the city of Mecca, unpublished message, Umm Al Qura University, Makkah.